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Abstract-The flexural vibration of symmetrically laminated rectangular plates is considered,
based upon the adoption of a shear-deformation plate theory. This theory is an extension of
Mindlin's theory for isotropic plates and includes the effects of both transverse shear defor­
mation and rotary inertia. Two related methods ofanalysis are described, namely the Rayleigh­
Ritz method and the finite-strip method. The assumed displacement fields incorporate the use
of the normal modes of vibration of Timoshenko beams and arbitrary combinations of standard
plate edge conditions are accommodated. Results presented for orthotropic simply supported
plates show very close comparison with available exact results of three-dimensional elasticity
theory, when appropriate selection of shear correction factors is made. A range of results is
presented for orthotropic square plates with various combinations of boundary conditions, and
these results serve to demonstrate both the convergence qualities of the solution procedures
and the very large errors that can be associated with analyses based upon the use ofthe classical
plate theory. A final numerical study is concerned with a clamped anisotropic plate and reveals,
not unexpectedly, that convergence of results is less rapid than it is for corresponding ortho­
tropic plates,

I. INTRODUCTION

It is becoming widely appreciated nowadays that the useful range of application of
classical plate theory (CPT) is quite restricted. For homogeneous isotropic plates, com­
parisons with the results of three-dimensional elasticity studies for simply supported
plates[I-3] reveal that the values of the natural frequencies of flexural vibration as
calculated on the basis of CPT can be significantly in error (overestimated) for other
than the lowest modes of truly thin plates. The chief source of the error is the neglect
of the effect of transverse shear deformation, which is implied by the adoption in CPT
of the Kirchhoffassumption that normals to the plate median surface before deformation
remain straight and normal to the median surface after deformation. Another source
of error in CPT analysis is the neglect of the effect of rotary inertia, though this effect
is of considerably less importance than that of transverse shear deformation.

Transverse shear effects are even more pronounced for laminated plates manu­
factured from orthotropic layers (or laminae or plies) ofunidirectional fibrous composite
materials, for the reason that the transverse shear modulus of such a plate is usually
very small in comparison with the extensional modulus. Laminated plates, with their
high strength-to-weight ratios, when fiber materials such as carbon or boron are used,
now find extensive employment as structural components, and prediction of their per­
formance is thus of considerable importance. Early analyses of laminated plates were
based on CPT, but again, in a similar but more pronounced way to the situation
pertaining to isotropic plates, comparisons of the accuracy of such analyses with three­
dimensional studes have revealed the large errors that are often associated with the
use of CPT: see, for example, [1,4,5].

A small number of "improved" or thick-plate theories have been developed which
take account ofthe effect oftransverse shear[6]. For homogeneous isotropic materials,
a popular one of these is that due to Mindlin[7] in which the basic assumption is that
a straight line, originally normal to the plate median surface, is constrained to remain
straight but not generally normal to the median surface after deformation: as with CPT,
the lateral displacement w does not vary through the plate thickness, while the in-
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plane displacements vary linearly through the thickness but are not solely proportional
to the derivatives of w. In Mindlin plate theory (MPT), because of the inclusion of
transverse shear effects, the two cross-sectional rotations l\Ix and l\Iy have to be con­
sidered as independent reference quantities, in addition to w. A shear correction factor
is introduced to account for the fact that the transverse shear strain distribution is not
uniform through the plate thickness. Yang, Norris and Stavsky[8] extended the shear­
deformation philosophy of Mindlin to embrace arbitrarily laminated anisotropic plates
formed of bonded layers of fiber-reinforced composite material. Whitney and Pagano[9]
made some modifications to the theory by using the plane-stress reduced stiffnesscs
and incorporating shear correction factors into the governing differential equations:
they also provided details of static and dynamic applications of the theory for simply
supported plates. A study of the approaches of [8] and [9] has been made by Wang
and Chou[IO], who conclude that the version of the shear-deformation plate theory
(SDPT) due to Whitney and Pagano produces somewhat the more accurate results.
especially for thick plates.

The thick-plate theory has been shown to produce results which correlate very
well with the limited available results of three-dimensional elasticity theory (for simply
supported rectangular plates[l-4]), both for isotropic and laminated plates, in problems
where it is the overall response of the plate that is of interest, such as in calculating
frequencies of vibration or buckling stresses. A proviso attached to this statement is
that for laminated plates, the ratio of transverse shear rigidities between one layer and
another be not unduly large, else the assumption in SDPT of common angles of cross­
sectional rotation through the plate thickness becomes inaccurate. This proviso is met
comfortably by most practical laminates, ~ince usually the individual plies are of similar
materials. The selection of appropriate shear correction factors is important in applying
SDPT[ll, 12].

There appear to be relatively few results available which relate to the flexural
vibration of rectangular laminated plates when transverse shear and rotary inertia ef­
fects are included in the analysis. Among these are closed-form solutions for plates
with all edges simply supported[l, 4, 8, 13, 14], approximate single-mode Galerkin
method solutions for plates with simply supported and clamped edges[15], a finite-strip
solution for the special case of one pair of opposite edges simply supported[l6], and
finite-element studies[17, 18]. The aim of the present work is to describe the use of
two numerical procedures for determining the natural flexural frequencies of a class
of laminated rectangular plates, and to present results for some arbitrary combinations
of standard support conditions at the plate edges. The SDPT in the form detailed by
Whitney and Pagano[9] is used. The numerical procedures are the Rayleigh-Ritz
method and one of its piecewise forms, the finite-strip method, and the work is an
extension of that described earlier for isotropic plates[19-22], where good accuracy
and rate of convergence were demonstrated. The present study is restricted to the
popular category of composite plates which are symmetrically laminated with respect
to the median SUIface and, hence, there is no coupling of extensional behavior to
bending/transverse shearing behavior. Within this category the plates may be cross­
ply or angle-ply laminates and may have orthotropic or anisotropic bending properties.
Although only single plates are considered in this paper, it should be realized that the
finite-strip method is capable of being extended to apply to the analysis of prismatic
plate structures.

2. THE SHEAR-DEFORMATION PLATE THEORY

The basic geometry of the rectangular plate with its coordinates and displacement
quantities is shown in Fig. 1. The plate is of uniform thickness h and is composed of
a number of layers, each consisting of unidirectional fiber-reinforced composite ma­
terial. The material of each layer is assumed to possess a plane of elastic symmetry
parallel to the xy plane, and axes of material symmetry also exist parallel and normal
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Fig. 1. Plate geometry,
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to the fiber direction. In general, of course, the material axes of an individual layer do
not coincide with the plate axes.

For plates which are symmetrically laminated with respect to the median surface
(the xy plane) there is no bending-stretching coupling, and for flexural vibration within
SDPT the displacements u, v and w at a general point in the plate can therefore be
assumed to have the form[7, 9]

u = Z $x (x, y, t), v = z $y (x, Y, t), w = w (x, Y, t). (1)

Here $x and $y are the total rotations along the x and y directions, respectively, of an
initially straight vertical line, as indicated in Fig. 1. The constitutive equations for a
symmetric laminate consisting of nl orthotropic layers are[9]

a$x/ax

Mx DlI a$ylay
My Dl2 D22 Symmetric
Mxy = Dl6 D26 D66 a$xlay + a$ylax (2)
Qy 0 0 0 A44 aw
Qx 0 0 0 A4S Ass -+$ay y

aw
-+$ax x

Here Mx, My and Mxy are the bending and twisting moments per unit length, and Qx
and Qy are the transverse shear forces per unit length. The laminate stiffness coef­
ficients are defined as

where

h/2 1 n/

Dij = f Qij Z2 dz = -3 L (Qi)/ (hT - hT-l)
-h/2 I~ I

(i,j = 1,2,6),

(i,j = 4,5),

(3)

(4)

Q .. = C. _ C.'3.C3j

'J 'J C
33

(i,j = 1,2,6) (5)

are the plane-stress reduced-stiffness coefficients, and
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(i,j=4,5) (6)

are the shear-stiffness coefficients. The Cij are the stiffness coefficients of three-di­
mensional elasticity. If the laminate is an orthotropic plate, then D 16 ,D26 and A45 have
zero value, of course.

The coefficients Qij will vary from layer to layer and for the individual layer ,.
when the coefficients are (Qij){, will depend on the material properties and orientation
of the layer. In eqns (3) and (4), the quantity hi is the distance from the median surface
to the lower surface of the lth layer. The parameters k;kj are shear correction factors.
introduced to allow for the fact that the transverse shear strain distributions are not.
in fact, uniform through the plate thickness. The selection of appropriate numerical
values for these factors is an important, but somewhat contentious, matter: the values
are dependent upon the basic material properties of the individual laminae and on the
number of laminae forming the plate. Chow[ll] derived formulae for evaluating the
shear correction factors of orthotropic plates with symmetric lamination, based on the
consideration of static cylindrical bending, and Whitney[12] extended this approach to
encompass nonsymmetric laminates. The procedure is used here in the calculation of
shear correction factors and leads to different values for k~ and k~ for symmetric lam­
inates. Numerical results presented by Noor[23] have demonstrated the suitability of
the correction factors determined in the manner suggested by [11] and [12] in predicting
the buckling stresses of layered composite plates.

The strain energy per unit area of the plate median surface is

!:l U = 1 [D (aljJx)2 + D (aljJy)2 + 2D aljJx aljJy + D (aljJx + aljJy)2
2 II ax 22 ay 12 ax ay 66 ay ax

+ 2D I6 aljJx (aljJx + aljJy) + 2D26 aljJy (aljJx + aljJy) J
ax ay ax ay ay ax

[ ( aw (aw)2) ( 1 all'+ ~ A 44 ljJ; + 2ljJv - + - + A 55 ljJ~ + 2ljJ, - +- ay ay ax

(
aw aw al\' aW)J+ 2A 45 ljJxljJy + ljJx - + ljJv - + --ay - ax ax ay

and clearly comprises contributions from both bending and transverse shearing actions.
The kinetic energy per unit area of the plate median surface is

ml (aw)2 m2 [(aljJx)2 (i)ljJy)2J!:IT =- - - + - -- + - .
2 at 2 at at

(8)

The quantities ml and m2 depend upon the material density P which. in general. varies
from layer to layer. Specifically,

h/2 nl

f P dz =- L PI (hi - hi_I) and
-h/2 1= I

h/2 1 nl

m2 =- f pz2dz =- -3 L pdhf - hf- Il, (9)
-h/2 1= 1

where PI is the material density of the lth layer.
In SDPT, three boundary conditions have to be specified at each edge compared

to the two of classical theory. In the numerical applications to be presented later, the
following "standard" edge conditions are considered on, say, an edge x =- x (a
constant):
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simply supported edge (S 1 condition)

clamped edge

free edge

w == 0, I/Jy == 0, M x == 0,

w == 0, I/Jx == 0, l!Jy == 0,

Mx == 0, Myx == 0, Qx == 0.

(10)

(11)

(12)

3. RAYLEIGH-RITZ ANALYSIS

The Rayleigh-Ritz analysis of homogeneous isotropic rectangular plates, based
on the use of MPT, is described fully elsewhere[20]. The approach used in the present
work when dealing with composite laminated plates using SDPT is closely related to
this earlier work, and so only brief details of the analysis will be recorded here.

In the Rayleigh-Ritz analysis, trial functions are assumed for the three fundamental
quantities W, I/J", and I/Jy over the complete median surface of the plate shown in Fig.
1. Here the form of these functions is taken to be

r r

W (x, Y) == L L amn Wm(x) Wn(y),
n-t m-I

r r

I!JAx, y) == L L bmn 'l'm(x) Wn(y),
n=-] m-l

r r

I/Jy(x, y) == L L Cmn Wm(x) 'l'n(Y).
n-I m-I

(13)

Equations (13) represent the spatial variation of the fundamental quantities. Of course,
in a harmonic vibration at circular frequency p, these quantities also vary sinusoidally
with time and, hence, W, 1\1", and I/Jy, as defined in eqns (13), are to be regarded as
amplitudes of motion.

In eqns (13), the four unidirectional functions Wm(x), Wn(y), 'l'm(x) and 'l'm(Y) are
the normalized modes of vibration, for lateral deflection and cross-sectional rotation,
of Timoshenko beams, having end conditions which are appropriate to the edge con­
ditions of the particular plate under consideration. The form of these beam modes is
detailed for isotropic beams in [20]: For the present work, little difference is involved
beyond using different values for the physical properties (such as the moduli ofelasticity
and shear, and the shear correction factor) in the x- and y-directions, as appropriate
to the plate under consideration. The quantities amn , bmn and Cmn in eqns (13) are simply
generalized displacements, of course.

The Rayleigh-Ritz procedure of the plate vibration problem requires the prelim­
inary generation of solutions for the Timoshenko-beam normalized modes to give the
functions Wm(x), etc., for incorporation in the displacement field of eqns (13). This
field is then substituted into the expressions for strain energy and kinetic energy per
unit plate area, eqns (7) and (8), and integration over the plate median surface gives at
any time t the whole-plate strain energy U and kinetic energy T, the latter being pro­
portional to p2 following the assumption of harmonic motion. The energy quantities U
and T also vary sinusoidally with time, of course, but if w, 1\1", and l\Iy in eqns (13) are
amplitudes, U and T will have their maximum values Umax and Tmax • In the standard
way it is then easy to generate the stiffness matrix K (obtained from Umax ) and the
consistent mass matrix M (obtained from Tmax) and to express the governing set of
equations in the usual eigenvalue form

(14)

The sizes of K and M are 3,2 X 3,2. In eqn (14), D is the column matrix of all the 3,2
generalized displacement amplitudes amn , bmn and Cmn . Equation (14) can be solved
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using standard procedures to yield the Rayleigh-Ritz-method estimates of natural fre­
quencies and mode shapes of vibration.

4. FINITE-STRIP ANALYSIS

A single thick finite strip is shown in Fig. 2: the strip spans the plate in the x­

direction (i.e. the ends of the strip at x = 0 and x = A are at the edges of the plate
itself), but only spans part of the plate in the y-direction, of course. Over the median
surface of an individual strip, the spatial variation of each of the three fundamental
quantities is represented as a summation of r products oflongitudinal (x-direction) series
terms and crosswise (y-direction) polynomial functions. Thus the spatial strip field is

H;}
, [W,(X) 0 ~ ] [~.~y) 0

~.L]kJ= L 0 Wi(x) cIln(Y)
i=1 0 0 '1';(x) 0 0

or

o = L Si(X) (Xn(Y) Ani. (15)
;=1

In eqn (15), cIln(Y), occuring in (Xn(y), is a row matrix defined as

cIln(Y) = [1, Y, ... ,yn], (16)

which represents a crosswise polynomial interpolation or order n. The same order of
interpolation is assumed for each of the fundamental quantities and, in fact, for all the
results presented later a value of n = 4 is assumed: neither of these assumptions need
be adopted. The column matrix Ani is the matrix of displacement coefficients corre­
sponding to the ith terms of the longitudinal series. The quantities Wi(x) and 'l'i(X) ,
occurring in Sj(x), are the ith terms of the same series of Timoshenko-beam modes used
in the Rayleigh-Ritz analysis.

In SDPT only CO·type continuity is required for each of w, "'y and "'x, and for the
finite strips used here the values of these quantities at (n + 1) reference lines are used
as degrees of freedom: for example, with n = 4 there are five reference lines-two at
the outer edges and three in the interior-as shown in Fig. 2. The displacement coef-

Fig. 2. A finile strip (showing three interior reference lines).
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ficients for each series term are easily related to the strip degrees of freedom for the
same series term by an equation of the form

(17)

where

(18)

and Cn is a square matrix of order 3n + 3. The spatial variations of w, t/Jx and t/Jy can
then be expressed in terms of the strip degrees offreedom by substituting eqn (17) into
eqn (15).

In the free-vibration problem it is convenient to regard 8 as representing the am­
plitudes of w, t/Jx and t/Jy in a harmonic mode and, correspondingly, to work again in
terms of the maximum strain energy, Umax, and kinetic energy, Tmax, of the vibrating
strip.

Using eqn (7) and integrating over the strip median surface, the maximum strain
energy of the strip can be expressed as

Jbl2 fAUmax =! _ ((31 F 1 PI + pf Fl Pl) dx dy. (19)
-bt2 0

Here

r" DI6 DI6

D"]F I = DI6 D66 D66 D26 (20)DI6 D66 D66 D26 '

DI2 D26 D26 D22

r" A4S Ass A,,]
F2 = A4S A44 A4S A44 (21)

Ass A4S Ass A4S '

A4S A44 A4S A 44

and

PI et/Jx ot/Jx at/Jy ot/J } r= T = L Bli Ani, (22)ox oy ax Y j= I

Pl = {t/Jx
oW awl rt/Jy - a = L B2i A"i' (23)
ax Y i=1

The matrices BJj and B2j can be defined in terms of the beam functions Wj(x) and 'l'Ax),
and the polynomial function ~m(Y), through use of eqn (15)[21].

The strip strain energy, eqn (19), can be expressed using eqns (17), (22) and (23)
as

Proceeding further, the strain energy can be put in the familiar form

Umax = i d~ K" d",

where

dn = {dnl d,,2 ... dni ... dnr}

(24)

(25)

(26)
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is the column matrix of all the strip freedoms, and Kn is the strip stiffness matrix,
corresponding to crosswise interpolation of order n. This stiffness matrix is of similar
form to that defined in more detail in the earlier work[21].

The maximum kinetic energy of the finite strip when vibrating in a harmonic mode
having circular frequency p is, making use of eqns (8). (15) and (17).

J/'12 1/1
[,. ,. 'J_12 I r 1 I 'Tmax - :2 P _-., 2: 2: d nl en (l,,(y) Si (x) G Sj(x) (l1l(Y) en dnj dx dy.

b,. 0 i= I j= I

where

C7)

This can be put in the form

G == 0

o

o

o

o

o (28)

C!9)

where M n is the strip consistent mass matrix, which is of similar form to the mass
matrix defined in more detail in [21].

The stiffness and mass matrices for the whole plate are obtained by the assembly
of strip matrices in the standard manner, and the set of equations governing the plate
free-vibration problem then has the same general form as shown for the Rayleigh-Ritz
procedure in eqn (14), with D now interpreted as being the complete column matrix of
plate degrees of freedom. The formulation is a consistent one, and exact integration is
used in evaluating the strip matrices: hence, as with the use of the Rayleigh-Ritz
method, the natural frequencies obtained will be upper bounds to the exact SDPT
frequencies.

5. NUMERICAL APPLICATIONS

In this section, results are presented of the application of the two solution pro­
cedures described above to laminated plates with a number of combinations of edge
conditions and material properties, including orthotropic and anisotropic plates. The
plates are in fact all of square planform of side length A, but plates of rectangular
planform could just as easily be considered. The plates are described by a symbolism
defining the boundary conditions at their four edges; a SCSF plate, for instance, means
a plate whose edges are simply supported, clamped, simply supported and free, re­
spectively, starting from the edge x = 0 and proceeding clockwise around the plate.
Vibrational mode shapes are usually described in the form m, n, where m and n are
the numbers of half waves in the x and y directions, respectively.

Except where indicated to the contrary, the values used for the shear correction
factors have been those calculated according to the procedures of [11) and [12].

As mentioned earlier, when using the finite-strip method, attention is restricted to
the strip model based on quartic crosswise interpolation: each strip, correspondingly,
has five reference lines and 15 degrees of freedom per longitudinal series term. Where
the number of finite strips is quoted this means the number of strips in the whole plate.

Srinivas and Rao[4] have used three-dimensional elasticity theory to analyze the
free vibration of a square simply supported three-layer orthotropic laminate, and their
exact results provide very useful benchmark values, with which to compare the pre­
dictions of the present methods. Each of the two outer layers of the laminate is of
thickness O.lh, with the middle layer correspondingly O.8h, where h is the total plate
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Table I. Fundamental frequency of SSSS nonhomogeneow, orthotropic square plates.

Material Shear Values of 0 ,1p h2lEy?
ratio correction Three- Rayleigh- Finite strip CPT Rayleigh -

EX1
factors

i
dimensional Ritz solution, solution Ritz

k
4

Z• k
5

elasticity solution, I strip and [4] solution,r=I,
Ex2

solution r-I r=1 s.c.f.-5/6
r41

I 0.8333 0.04742 0.04740 0.04740 0.04967 0.04740

2 0.7460 0.05704 0.05702 0.05702 0.06058 0.05732

5 0.5324 0.07715 0.07713 0.0771 3 0.08533 0.07959

10 0.3525 0.09810 0.09806 0.09807 0.11533 0.1065

15 0.2625 0.11203 0.11197 0.11198 0.13899 0.12776
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thickness: the thickness-to-side length ratio, h/A, is 0.1. The material properties are
those of Aragonite crystals, which are such that for any particular layer.

{Ql1 QI2 Q22 Q44 Qss Q66} = Ex {0.99978 0.23119 0.52489 0.26681 0.15991 0.26293},

where Ex is the elastic modulus in the x-direction. The laminate is a nonhomogeneous
plate with the ratio of the properties of the identical outer layers to those of the central
layer (typified by the ratio Exl /Ex2 , where 1 refers to the outer layers; 2, to the central
layer) varying between 1 and 15. The values of the shear correction factors determined
according to the procedures of [11] and [12] vary considerably with the material ratio
and are recorded in column 2 of Table 1. This table presents results for the fundamental
frequency of vibration, based on the predictions of three-dimensional elasticity theory,
CPT and SDPT. For the latter plate theory, solutions are presented in columns 4 and
5 of Table I, corresponding to the use of the Rayleigh-Ritz method (with r = I) and
the finite-strip method (with 1 strip and r ::;: I): these solutions are based upon the use
of the shear correction factors recorded in column 2 of the table. The SDPT solutions
agree to well within 0.1% with the solutions based on three-dimensional elasticity the­
ory, for all the values of material ratio. (It is noted that for this problem, the Rayleigh­
Ritz method results are exact within the confines of the adopted SDPT for the prescribed
values of the shear corrections factors.) On the other hand the results based on CPT
are in considerable error, reaching 24% for a material ratio of 15. The final column of
Table 1 lists the results obtained using the present Rayleigh-Ritz procedure, but now
with the shear correction factor taken to be 5/6, as is commonly assumed for isotropic
materials. These results, while still a considerable improvement on the forecasts of
CPT, are markedly inferior at high values of the material ratio to those given in columns
4 and 5 of the table, and this emphasizes the importance of proper selection of shear
correction factors.

Now we consider square plates with various edge conditions which are five-layer
orthotropic cross-ply laminates, i.e. 0/90/0/90/0 laminates, whose material properties
for all plies are identical and correspond to a typical high-modulus-fiber composite with

and

EdET = 30,

VLT = 0.25,

G17/ET = 0.5

where subscripts Land T refer to directions parallel to the fibers and transverse to the
fibers, respectively. Two plate thicknesses are considered, with total thickness-to-side
length ratios, hlA, of 0.01 and 0.1. The thickness of each of the 0° plies is two-thirds
that of each of the 90° plies, so that the total sum of the thicknesses of the 0° plies and
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90° plies is the same. The shear correction factors are k~ :: 0.87323 and k3 = 0.59139.
The numerical results for these laminates are given in terms of a frequency parameter
n, which is defined as

where

A ' [ J1/2- P
n=p--­

h (Q1l)t
(30l

(31)

which has the value 0.5 I7745EL for the plate described here.
The manner of convergence of results obtained using the finite-strip method is

detailed in Table 2 for the first five natural frequencies of the moderately thick (hiA
= 0.1) SSSS plate. For this plate the longitudinal series used is exact, and the accuracy
of the finite-strip procedure is solely dependent on how closely the crosswise variation
of the displacement quantities in a particular mode is represented by the polynomial
part of the strip displacement field. The results show that one strip per half wave of
crosswise mode shape gives highly accurate results. The Rayleigh-Ritz method again
yields results for this problem which are exact within SDPT, and these results are
virtually identical with the converged values of the finite-strip approach. Results ob­
tained based on CPT are seen to be in very considerable error. The magnitudes of the
percentage differences between the forecasts of SDPT and CPT are very much greater
for the present fiber-reinforced laminated plate, with its low transverse shear rigidity.
than for the corresponding isotropic plater 19].

In Tables 3 and 4, further detailed results are given, relating to plates with other
boundary conditions (viz. SCSC and SSSF) and of both moderately thick (hiA = 0.1)
and thin (hiA = 0.01) geometry. These results are convergence studies for the Ray­
leigh-Ritz method, plus particular finite-strip method solutions based on the use of
three series terms and three strips across the complete plate. These latter results are
generated in two separate ways, with the strips running first between an opposite pair
of simply supported edges and then running in the direction perpendicular to that. In
the tables the quoted CPT solutions are exact within the confines of the classical theory.
and were generated using the VIPASA program of Wittrick and Williams[24].

For the SCSC plates there is again very close correspondence between the results
of the Rayleigh-Ritz and finite strip methods. For the thin geometry the predictions

Table 2. Frequency parameters n for SSSS plate, h/A = 0.1, by the finite-strip method.

No. of No. of
Strips series Mode

terms,
r 1,1 1,2 2,1 2,2 J ,3

1 1 3.604 7.430 - - 13.495

2 3.604 7.430 8.838 11.023 13.495

2 1 3.604 7.094 - - 11.763

2 3.604 7.094 8.838 10.799 11.763

3 I 3.604 7.093 - - 11.715

2 3.604 7.093 8.838 10.799 11.715

SDPT exact
solution (Rayleigt 3.604 7.093 8.838 10.799 11.714

-Ritz method)

CPT solution 4.214 9.829 13.840 16.854 20.646
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Table 3. Frequency parameters n for sese plates, hlA = 0.1 and 0.01 (RRM denotes Rayleigh­
Ritz method, FSM denotes finite-strip method).

h
Mode

Solution
A Procedure

1,1 1,2 2, I 2,2 1,3

0.1 rEI 4.490 - - - -

RRM r E2 4.490 7.912 9.214 11.328 -
solution r E3 4.489 7.912 9.214 11.328 12.202

r E4 4.489 7.911 9.214 11.328 12.202

r-5 4.489 7.911 9.213 11.328 12.202

SS
FSM series 4.489 7.910 9.213 11.327 12.203
solution CC

series 4.489 7.912 9.213 J1.328 12.203

CPT solution 6.215 14.553 14.612 20.055 27.747

0.01 r-I 6.184 - - - -
r-2 6.184 14.369 14.502 19.829 -

RaM
solution . r-3 6.184 '14.369 14.500 19.829 27.134

r-4 6.184 14.369 14.500 19.829 27.134

r-5 6.184 14.369 14.500 19.828 27.134

SS 6.184 14.382 14.500 19.835 27.168FSM serie!

I
solution CC 6.184 14.369 14.502 19.830. serie 27.133

CPT solution 6.2J5 14.553 14.612 20.055 27.747

Table 4. Frequency parameters n for SSSF plates, hiA = 0.1 and 0.01.

Solution Mode
h ProcedureA 1,1 J ,2 2,1 2,2 1,3

0.1 r-1 2.909 - - - -
r-2 2.908 4.405 8.543 9.260 -

RRM
solution r E3 2.908 4.404 8.543 9.257 8.516

-
r-4 2.908 4.403 8.542 9.256 8.515

r-5 2.908 4.402 8.542 S.255 8.515

SS 2.907 4.396 8.541 9.249 8.510
FSM Series
iolution SF 2.908 4.403 8.543 9.257 8.517Series

CPT Solution 3.414 5.208 13.490 14.400 12.183

0.01 r-l 3.409 - - - -
r-2 3.408 5.200 13.390 14.307 -

RaM
solution r-3 3.408 5.198 13.390 14.297 12.118

r-4 3.408 5.197 13.390 14.295 12.118

r-5 3.408 5.197 13.390 14.294 12.117

SS
FSM Series 3.408 5.197 13.389 14.294 12.125
solution SF 3.408 5.197 1~.392 14.299 12.118Series

CPT Solution 3.414 5.208 13.~9(J 14.400 12.183-
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of CPT are slightly high as expected, while for the moderately thick plate, the neglect
of transverse shear and rotary inertia leads to very large overestimates of the natural
frequencies, reaching 127% for mode (l, 3). For the SSSF plates, there is also very
good agreement between the results of the different methods. It is recalled from earlier
work on isotropic plates[21, 22] that when longitudinal series are used which incor­
porate a free-end condition, there is some effect on the kinematic admissibility of the
plate displacement field. This effect will apply to the present Rayleigh-Ritz method
solutions and to the finite-strip method solutions when using the SF series, but not
when using the SS series. In fact, the practical influence of the effect on numerical
values is tiny, as is evidenced by the closeness of all three types of SDPT result in
Table 4. The predictions of CPT for the moderately thick SSSF plate are again seen
to be very considerable overestimates.

Results for the moderately thick CCCC plate are recorded in Table 5. Details of
the convergence of the results of both the finite-strip and Rayleigh-Ritz methods are
given. It is seen that there is almost exact correspondence between the most accurate
(i.e. lowest) values obtained for each solution procedure, and this provides a good
check on their validity. No other independent comparative solutions are available for
this particular plate, whether based on SDPT or CPT.

Although series terms up to the level r = 5 have been used when applying the
Rayleigh-Ritz method in the above studies of orthotropic plates, it is clear that in the
class of problem considered here, an accurate value for the fundamental frequency is
obtained with the use of only the minimal displacement field, corresponding to r = I.
Also, when applying the finite-strip method it is usually sufficient for practical purposes
to use only a single strip (in the whole plate) and a single series term (for each of the
fundamental quantities) in calculating the fundamental frequency.

Table 5. Frequency parameters n for ccce plate, hlA = 0.1.

No. of
series Mode
terms,

r 1,1 1,2 2,1 2,2 1,3

1 5.640 9.102 - - 14.628

2 5.640 9.102 9.972 12.304 14.628

Po 3 5.639 9.102 9.972 12.304 14.628.......
-- 4 5.638 9.102 9.972 12.303 14.628..

" -0
5 5.638 9.101 9.972 12.303 14.627....

--~
5.638 8.583 12.6780 1 - -..

'" 2 5.638 8.583 9.971 11.931 12.6780
,<::

--'" ..
3 5.637 8.582 9.971 11.931 12.678t= '"....

Po .......
-- 5.637 8.582 9.971 11.931 12.678... .. 4

--.. N

'" 5 5.636 8.581 9.971 11.931 12.677
--....
.S 1 5.638 8.582 - - 12.628.... ..

'" 5.638 8.582 9.971 11.930 12.628.... 2...
--.. 5.637 8.581 9.971 11.930 12.628
'"

3

" 1 5.786 - - -
-~0....

~

2 5.638 8.583 9.972 11.932 -N ~---.... 0'" .. 3 5.638 8.583 9.971 11.932 12.627I
,<::'"
""0.... .c:

5.638 8.582 9.971 11.931 12.627'" -- 4.... '"",5

'" 5.637 8.582 9.971 1I .931 12.627'" 5 I
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The final numerical study concerns the vibration of a fully clamped square ani­
sotropic plate, with bending-twisting coupling present and D 16 and DZ6 correspondingly
non-zero. The plate in question is one that has been analyzed within the framework of
CPT by Ashton and Whitney[25): it is a single-layer plate of orthotropic material, but
the principal axes of orthotropy are orientated at an angle of 30° to the x axis. The
material properties of the orthotropic layer are

GLT/ET = Grr/GT = 0.25, VLT = 0.3.

Here two plate thicknesses are investigated, these being hlA = 0.01 and 0.1 again, and
the finite-strip method is used to calculate the first four frequencies in each case. The
shear correction factors are taken to be k~ = k~ = 5/6: these are the values calculated
according to the procedures of [11) and [12) for an equivalent orthotropic plate (i.e.
for the plate as defined here, except that D16 = D Z6 = 0). Results are presented in
Table 6, and it is apparent that convergence is poorer for the anisotropic plates than
for orthotropic plates, particularly with regard to increase in the value of r. This re­
duction in efficiency of solution is due to the fact that the nodal lines of the vibrational
mode shapes are highly skewed for the anisotropic plates. Nevertheless, it appears
from the manner of convergence of the results that the quoted values of frequency
corresponding to the use of three strips and r = 6 are probably within a percent or so
of the exact frequencies within SDPT. For the thicker geometry, the differences be­
tween the calculated SDPT and CPT frequencies indicate, once more, the very sig­
nificant influence of transverse shear and rotary interia. Incidentally, the comparative
CPT results are based on the use of the Rayleigh-Ritz method and Ashton and
Whitney[25) note that convergence of their approximate results is much slower for
anisotropic plates than for orthotropic plates.

6. CONCLUSIONS

The flexural vibration of rectangular laminated plates, manufactured from layers
of unidirectional fibrous composite material, has been studied, based upon the use of

Table 6. Frequencies of CCCC anisotropic plates by the finite-strip method.

No. of A2 J 20 - "LT"TLIl

No. of series
Values of p ii ET

strips terms, hlA • O. I hlA • 0.01
r

Mode 1 Mode 2 Mode 3 Mode 4 Mode I Mode 2 Mode 3 Mode 4

1 15.74 24.72 36.73 53.04 23.34 38.98 63.85 125.57

2 14.70 22.90 28.89 33.46 21.59 34.1 I 55.24 55.55

2 3 14.50 22.50 27.24 31.57 21.39 33.49 52.40 52.92

4 14.39 22.40 26.98 31.33 21.34 33.46 51.70 52.72

5 14.32 22.29 26.74 31.13 21.31 33.38 51.59 52.62

6 14.28 22.25 26.65 31.07 21.30 33.38 51.51 52.59

I 15.74 24.71 36.46 50.10 23.32 38.95 62.15 93.78

2 14.70 22.89 28.89 33.32 21.52 33.81 53.41 54.86

3 3 14.50 22.48 27.24 31.50 21.31 33.12 5.0.76 52.07

4 14.39 22.39 26.97 31.27 21.26 33.09 50.57 51.41

5 14.31 22.27 26.73 3i.07 21.23 33.01 50.47 51.29

6 14.28 22.24 26.64 3\.01 21.22 33.00 50.43 51.2\

CPT sOlution[25] 21.35 33.18 50.72 51.87 21.35 33.18 50.72 51.87
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shear-deformation plate theory. Two numerical techniques have been employed in the
study, viz. the Rayleigh-Ritz method and the finite-strip method, and in both the trial
displacement functions make use of the normal modes of vibration of Timoshenko
beams. Boundary conditions at the plate edges can be any combination of the standard
types.

For orthotropic plates the Rayleigh-Ritz method is very efficient, being capable
of accurately predicting the frequency of the fundamental mode of vibration using just
a one-term representation of each of the three basic reference quantities. The finite­
strip method has also been shown to be an accurate analysis technique, with good
convergence properties: this method has the significant virtue that it can be extended
to deal with longitudinally invariant plate structures, rather than with just single plates
as described herein. Where comparison can be made with three-dimensional elasticity
solutions-for plates with all edges simply supported-it has been shown that there is
very close correspondence between the present results based on SDPT and the elasticity
theory results, provided that appropriate shear correction factors are used in the shear­
deformation approach. For more-general boundary conditions, comparative solutions
(other than those based on the classical plate theory) are not available, but the fact
that the two solution procedures yield converged frequency predictions that are very
close to one another, and that their convergence qualities are good, provides strong
evidence of their validity.

For anisotropic plates some loss of accuracy is involved, which is to be expected
since the mode shapes of vibration become more complicated. Nevertheless, conver­
gence to true SDPT solutions will occur with use of the two subject methods, albeit
at reduced rate.

The scale of the influence of transverse shear, and of rotary inertia, depends on
the particular application, but increases with increase in the ratio of plate thickness to
half wavelength of vibration, with increase in the degree of constraint imposed at the
plate edges and, of course, with increase in the transverse shear flexibility of the plate
material. Use of an analysis based on the classical plate theory can often lead to un­
acceptable errors for other than the lowest modes of vibration of very thin plates.
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